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An analytical method of calculating variable 
diffusion coefficients 
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Engineering, University of Thessaloniki, Thessaloniki, Greece 

An analytical method of calculating variable diffusion coefficients has been developed. The 
Boltzmann-Matano graphical method used up to now has certain disadvantages which restrict 
the acuracy of the evaluated diffusion coefficients. Due to these disadvantages, the accuracy 
of this method is restricted even more when diffusion coefficients are determined in an area of 
low concentration of the diffused species of atom. The reliability of the analytical expression 
obtained in the present investigation has been verified experimentally by comparing the results 
obtained with those of the graphical method. On the basis of this comparison the analytical 
method can claim an accuracy better than, or at least equal to, that of the graphical method. 

1. In troduct ion  
The volume diffusion coefficient (D) of a diffusion 
process can be determined by solution of the second 
Fick's law 

c~t - ax D~-x (1) 

where C is the concentration of the diffused species of 
atom at distance x. Grube and Jedele [1] obtained the 
solution of Equation 1 when the diffusion coefficient is 
independent of the concentration. When the diffusivity 
is a function of the concentration, the solution of 
Equation 1 can be expressed [2] as 

l d 2  ,c  
D - 2 ~ J 0 2 d C  (2) 

with the variable 2 suggested by Boltzmann [3] to be 

2 = x / t  '/2 (3) 

The calculation of D from Equation 2 requires the 
determination of the integral, which is evaluated 
graphically [2]. However, errors are introduced in the 
evaluation of D from Equation 2 for two main reasons: 
firstly, due to the uncertainty of the Matano interface 
position the integral in Equation 2 cannot be evalu- 
ated correctly, and secondly the value of the slope 
d2/dC is difficult to define accurately, particularly at 
the two concentration extremes. 

Considering the experimental results for diffusion 
coefficients of da Silva and Mehl [4], as well as the 
disagreement between theory and chemical diffusion 
data pointed out by Zener [5] and Nowick [6], Hall [7] 
derived an analytical expression to evaluate D as a 
function of concentration. He used the following 
relationships: 

C 
- -  = �89 + erfu) 
Co 

erfcu = �89 + erfu) 

u = h 2 + k  
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where Co is the initial concentration and h and k are 
constant parameters. He plotted the concentration 
against distance as u against 2 on semi-probability 
paper and obtained the formula 

1 kTr 1/2 
D = ~ + ~ e x p ( u  2) erfcu (5) 

Grank [8] has slightly modified Hall's expression by 
using the Boltzmann variable 2 divided by two. He 
also avoided using the error function of Equation 4b 
because it is not in standard notation [9], and obtained 
the formula 

1 kr~ ~/~ 
D = ~ + 7 ( 1  + erfu)  exp(u 2) (6) 

In the present investigation the analytical method 
developed by Hall [7] has been modified and extended 
at intermediate concentrations in order to establish an 
analytical expression determining variable diffusion 
coefficients over the whole concentration range. 
Finally, the results of the analytical method and the 
Boltzmann-Matano graphical method are compared. 

2. Theoretical  considerations 
From the above section it is clear that the plot of 
concentration against distance on a semi-probability 
paper (Fig. 1) yields a curve with straight-line parts in 
the regions of low and high concentrations. Thus, the 
slope and the intersection with the vertical axis 
(x -- 0) of these two straight lines can be evaluated as 
the constants h and k, respectively. Furthermore, 
using these constants through the following set of 
relationships [1, 9] 

C 
C---~ = �89 erfc u (7a) 

erfcu = 1 - e r fu  (7b) 

u = h x  + k (7c) 

u = ~/2 fo exp (--z  2) dz (7d) erf 
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Figure 1 (a) Diffusion profile and (b) concentration against distance across the interface of Fe-50% Sn diffusion sample, 200 ~ C. 

and taking the Boltzmann parameter  2 equal to 

2 = x/2t 1/2 (8) 

Equation 1 results in 

x dC d ( D  d s  (9a) 
2t 

For  the solution of  Equation 9a we distinguish the 
three cases discussed below. 

2.1. Low-concentration region 
In this case we consider the following boundary  con- 
ditions: 

for x ~ oe then C ~ 0 and dC/dx  ~ 0 

for x --* Xm then C ~ Cm 

and dC/dx ---, to a certain value 

where x~ is the position of  Matano  interface. Accord- 
ing to these boundary conditions, integration of  
Equation 9a gives 

f ;  d--C-C (9b) 1 xdC = - D  dx 
2t 

Differentiating Equation 7a and substituting into 
Equation 9b D is evaluated as 

1 
D = ~ exp (U 2) f ;  X exp (--  u 2) dx  (10a) 

The calculation of  the integral in Equation 10a (see 
Appendix) gives 

1 
D = ~ (1 - k~ 1/2 exp (u 2) erfc u) (10b) 

2.2.  H i g h - c o n c e n t r a t i o n  r eg i on  
The boundary conditions in this case are 

for x ~ - go then C ~ C~o and dC/dx  ~ 0 

for x --* Xm then C ~ C~n 

and dC/dx --* to a certain value 

Integration of  Equation 9a with the new boundary 
conditions results in 

1 f xdC= D(-d-xx ~ (11) 
2t 
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Again, differentiating Equation 7a and substituting 
into Equation 11, D is obtained as 

1 
D - 2 t e x p ( u  2) I ~ o o x e x p ( - u  2) dx (lZa) 

Evaluation of  the integral in Equation 12 (see Appen- 
dix) gives 

1 
D = 4h2 i  (l - k~ 1/2 exp (u 2) erfc u) (12b) 

2.3.  I n t e r m e d i a t e  r a n g e  of c o n c e n t r a t i o n  
At intermediate compositions the variation of the 
concentration as a function of  the penetration depth 
(Fig. 2) is not linear [7]. This means that the para- 
meters h, k which are constant in the regions of  low 
and high concentrations, in the intermediate con- 
centration range are varying with distance. Therefore 
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Figure 2 Semi-probability plot of concentration distribution against 
distance for the Fe-50 % Sn sample. At high iron concentration 
h A = 2650. k A = -2.30535; at low concentration h B = 605.5, 
k~ = -- 0.253 58. 
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Figure  3 Semi-probability plot of a diffusion 
profile dependent on concentration. 

Equations 10b and 12b can be applied in the inter- 
mediate concentration region if the h/, k/at  each point 
can be determined. Determination of these parameters 
has been worked out by an arithmetical method based 
on the geometrical meaning of the derivative [10] in 
the following way. 

Firstly, let the curved part of  the plot in Fig. 2 be 
dividied into N elementary sections (Figs. 3 and 4), 
and secondly consider the tangent of each section 
which is drawn parallel to the corresponding chord on 
each elementary bow section. The tangent touches 
each bow almost in the middle, and hence the pair h/, 
k/are determined from the slope and the intersection 
with the vertical axis, respectively. The variation of the 
tangent between two successive sections determines 
the slope change and can be calculated according to 
the trigonometrical relationship 

tan co/ = tan (co~ 1 - Aog~) (13) 

where m/is the angle between the horizontal axis and 
the tangent at the corresponding bow (Fig. 3). The 
development of  Equation 13 gives 

tan o)i - tan (Aog~) 
tan co i = (14a) 

1 + tan cog tan (Amg) 

For  sufficiently large value of N, two approxi- 
mations are introduced without significant errors: 
firstly, the variation in the slope of the tangent 
between two successive sections is so small that we can 

consider tan A~o~ ~ 0. Equation 14a is then simplified 
to 

tan wi = tan (Di_ 1 - -  tan Aco i (14b) 

which is equivalent to 

h ix i  = hi l x i -  A h i x i  (14c) 

and finally results in 

hi = hi ] - A h i  (15) 

Secondly, the variance in the intercept to the tangent 
with the vertical axis in two successive sections Ak can 
be taken equal from section to section and can be 
expressed by 

kA --  kB 
A k  = N - k A - -  k l  = k l  - k2 = . . .  

= k i _ l  - -  k i  = k i -  kB (16) 

The above approximations give the possibility of 
describing any intermediate concentration accurately 
by a linear function. Each concentration can be con- 
sidered as the intersection point between the elemen- 
tary bow and the corresponding chord (Fig. 3). This 
point can now easily be described by the following 
pair of  the linear equations: 

f o r v  = 0 u0 = hox,~ + ko 

U 0 = h l X  A + k I (17a) 
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F i g u r e  4 Magnified elementary section of Fig. 3 at intermediate 
concentration, showing the variation of the angle co between the 
horizontal axis and the tangent. 

for v = 1 //1 = hl(XA q- Ax) q- k l 

Uo = h2(XA + Ax) + k 2 (17b) 

or generally 

f o r v  = i -  1 U i , -~ h i _ l [ x  A Jr- ( i  - -  1)Ax] + k i _  , 

u , _ ,  = hi [xA + ( i  - 1)Ax] + k, 

(17c) 

with the bounda ry  condit ions 

f o r v  = 0 h0 = ha, k0 = ka 

f o r v  = N hu = ha, kN = ka (17d) 

Equat ion  16. Finally, the parameter  k, can be cal- 
culated f rom Equat ion  16 with the help o f  the bound-  
ary condit ions (Equat ions 17d), and therefore the 
funct ion u can be evaluated. 

3. Experimental application and 
discussion 

The accuracy o f  the analytical method  developed to 
calculate variable diffusion coefficients has been veri- 
fied experimentally. For  this purpose,  two series o f  
diffusion data  coming f rom independent  sources o f  
diffusion processes have been checked. Bearing in 
mind that  diffusion couples should clearly express the 
dependence o f  diffusion on concentra t ion [11], con- 
venient binary systems o f  Fe /50% Sn and F e / F e -  
2 4 . 2 a t %  Ni [12] where chosen to satisfy this con- 
dition. However,  the study o f  the diffusion process 
was restricted to the first system only, and the dif- 
fusion couple was prepared in the following way. 

A small disc o f  0.25 m m  thickness was cut  off f rom 
a commercial  coil o f  mild steel specified by A S T M  
623. After  careful cleaning o f  the surface in 10% 
N a O H  solution and pickling in 10% Na2CO 3 solu- 
tion, the disc was tin-electroplated for  a convenient  
time to get a tin layer o f  about  0.25 m m  thickness at 
20 ~ C. Pure tin specified by A S T M  339 was used as the 
anode  in a solution for  the "ha logen"  process o f  tin- 
plating. In the next stage the diffusion couple obtained 
was put  into the furnace and annealed for 23 h and 
40 min at 200 ~ C, during which the temperature was 
kept constant  within + 1 o C. After  quenching in water 
at 25 ~ C, the sample was cut  parallel to the diffusion 
gradient away f rom the free interface o f  iron and tin 
in order  to avoid possible oxidat ion problems. The 
sample was then fixed in polyester and polished using 
d iamond  paste o f  0.25 #m. 

The diffusion process was then investigated by 
means o f  point-scanning spectroscopy.  The micro-  
probe  analyser Microscan-5 o f  the Cambridge  Instru- 
ment  Co. was used to obtain  the diffusion profile (Fig. 
la). In  order  to convert  the observed X-ray  intensity 
ratio between specimen and s tandard  to weight con- 
centrat ion the mos t  widely used Z A F  correct ion 
procedure  [13] was applied. The diffusion coefficients 

F r o m  the two equat ions o f  general form (Equat ions 
17c) the variat ion in the parameter  h for  two suc- 
cessive sections can be obtained by subtract ion as Distance 

k ~ -  ki-t  (#m) 
A h  i = h i _  1 - -  h i = (18) 

XA + ( i - -  1)Ax 

Finally, any intermediate concent ra t ion  can be 4 High 5 High 
expressed by the linear funct ion 6 High 

7 High 
ui_~ = hi[xa + ( i -  �89 + k, (19) 8 

which determines the midpoin t  o f  each elementary 10 Medium 
bow section in which the tangent  is drawn. 12 Medium 

F r o m  Equat ions  10b and 12b the diffusion coef- 14 Medium 
ficients can be calculated for any concentra t ion C~ 16 Medium 
because Equa t ion  19 defines the funct ion u at any 18 Low 
distance. The parameter  h~- can be calculated f rom 28 Low 
Equa t ion  15 provided that  the difference Ahi is known.  22 Low 

24 Low 
This difference is calculated f rom Equat ion  18 using 
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TABLE I Diffusion coefficients in the Fe-Sn system calculated 
by different methods 

Concentration D (cm 2 sec- i ) 
range of iron 

Bo]tzmann-Matano Present 
method method 

4.36 • 10 -13 7.16 • 10 -13 

4.31 x 10 -I3 7.67 x 10 -~3 
1.75 x 10 -12 8.35 x 10 -13 
1.18 • 10 -12 9.70 x 10 -13 
1.23 x 10 -12 1.01 x 10 12 

3.94 x 10 -12 2.95 x 10 -12 
5.65 • 10 12 4.23 x 10 -12 
6.01 x 10 -12 7.10 • 10 -12 
8.03 x 10 -12 1.25 x 10 u 

9.93 x 10 12 1.42 x 10 -11 
1.03 x 10 -tl 1.60 x 10 -11 
9.44 x I0 12 1.84 • 10 -u 
7.65 x 10 )2 2.16 • 10 -11 



were determined first by the Bol tzmann-Matano 
graphical method (Table I) and then by the present 
analytical method (Fig. l b and Table II). The values 
of D obtained by the two methods are found to be in 
very good agreement. 

It is widely believed that the reliability of  an analyti- 
cal method in calculating variable diffusion coef- 
ficients can best be verified by analysing the diffusion 
profiles of other investigators and then comparing the 
results. Thus, the diffusion profile from the couple 
Fe/Fe-24.2 at % Ni (Fig. 5) obtained by Goldstein et  

al. [12] was analysed by this method. The atomic 
percentage of nickel was converted into concentration 
against distance and then replotted on semi-probability 
paper (Fig. 6). The values of D along the diffusion 
zone were calculated analytically. Goldstein et al. [12] 
analysed the same diffusion profile by the graphical 
method and established the following relationship to 
calculate D as function of the concentration: 

D = exp (0.0515C~ + 1.15) 

76.000 -- 11.6CNi" ~ 
x exp - R-T / 

where CN~ is the atomic percentage of nickel. Table II 
shows the values of  D from both methods, and it is 
clear that there is very good agreement. 

From Equations 10b and 12b it is evident that the 
evaluated formulae for D at the concentration extremes 
are identical. Having determined the parameters h, k 
at both concentration extremes as well as in the 
intermediate concentration region, it is possible for the 
value of D to be determined in the whole range of  
concentration. However, the reliability of the analyti- 
cal method depends on the accuracy with which the 
parameters h, k can be evaluated, and two points 
should be stressed here: 
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Figure 5 Diffusion profile in the Fe-Ni system (after Goldstein e/al. 
[12]). Symbols refer to three different scans. 

TABLE II Diffusion coefficients from the Fe/Fe-24.2at% Ni 
diffusion couple, evaluated by different methods (annealed 
4.27 x I04 sec at 1288~ 

D i s t a n c e  C o n c e n t r a t i o n  D ( c m  2 sec  1 ) 

(#m) of nickel 
Boltzmann-Matano Present 

at % wt % method method 

0 24.2 23.26 
25 23.7 22.75 2.78 • 10 -~~ 2.87 • I0 -I~ 
50 22.1 21.23 2.55 x 10 l0 2.66 x 10 -E~ 
75 19.25 18.46 2.17 X 10 -10 2.60 x 10 10 

100 13.5 12.93 1.58 x 10 10 2.35 x 10 -l~ 
125 6.77 6.45 1.09 x 10 to 1.43 x 10 -t~ 
150 1.3 1.2 8 • 10 -11 1.23 x 20 -1~ 

1. The determination of the parameters h, k at the 
two concentration extremes as the slope and the inter- 
section of the straight lines is very accurate, because 
the calculation is always referred to semi-probability 
paper which is naturally of  standard dimensions. The 
error involved is therefore kept to a minimum. 

2. The determination of  the parameters hi, ki in the 
curved portion of  the concentration curve is depen- 
dent on the number of  elementary sections taken. 

Of course, there is always the possibility of  splitting 
the curve into a sufficiently large number of  sections in 
order to improve the accuracy of  the calculation. As N 
approaches a large number, each elementary bow sec- 
tion and the corresponding chord are coincident and 
therefore the slope of the tangent in the middle of the 
bow (Equation 19) as well as the intersection with the 
vertical axis are determined accurately. Hence the 
accuracy of  the analytical method depends on the 
accuracy of the parameters h, k determined at the 
concentration extremes. 

On the other hand, the accuracy of the Matano 
method is restricted by the following errors: 
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Figure 6 Semi-probability plot of concentration distribution against 
distance for the Fe/Fe-24.2 at% Ni sample, h A = 299, 
k A = - 1.98728; h B = 196.1, k B = 1.27464. 

2287 



1. The uncertainty of the Matano interface position 
restricts the accuracy of the calculated value of the 
integral ~0 c 2dC. 

2. The error in the accuracy of the slope d)~/dC 
depends on the smoothness of the diffusion curve, and 
varies for different profiles because their dimensions 
are only occasionally the same. 

3. Determination of the slope d2/dC in the profile 
of a short diffusion zone results in a large error. The 
same error also applies when D values are evaluated 
either for high or low concentrations. 

Finally, comparison of the accuracy of the two 
methods depends on the errors involved. Taking into 
account the errors mentioned above, the analytical 
method can claim a better accuracy than the graphical 
one, particularly at the concentration extremes, and 
therefore the accuracy over the whole concentration 
range is better. 

4 .  C o n c l u s i o n s  
An analytical relationship has been established to give 
interdiffusion coefficients (D) in the whole concentra- 
tion range of a binary system. 

Comparison between values of D from the analyti- 
cal and graphical method, show very good agreement. 
The discrepancy observed in the values of D by the 
two methods is mainly due to errors involved in the 
graphical method, and these deteriorate at the con- 
centration extremes. 

Appendix 
The solution of Equation 1 only exists with the 
assumption 

f c=loo xdC = 0 (A1) 
C=0 

for the boundary conditions to be satisfied. Putting 
arbitrarily the Matano Interface at plane XM = X 
the above integral can be split into 

2 cm xdC + xdC = 0 (A2) 

Differentiation of the Relation 7a and substitution 
into Equation A2 results in 

Cooh 
f x  e x p ( - u  2) xdx  - - -  ~1/2  

x I :  exp ( - u 2 ) x d x  

Coh 

= 0 (A3) 

The calculation of the two integrals in Equation A3 
gives 

f x  exp ( -  u 2) xdx 

1 
= ~-~ exp ( -  u 2) 

X 
= ~-5 f-  ~ exp ( - u 2) d(hx + k) 2 

k 
fx oo exp ( -  u 2) d(hx + k) h 2 

krd/2 2 
2h 2 rd/2 ; ,~  exp ( - u 2 ) d u  

1 kT~ 1/2 kg  1/2 
2 ~  exp ( -  u 2) + 2h 2 2h ~ erf (u) 

D 

and 

I ;  exp ( - u  2) xdx  

1 
= ~ exp ( -  u 2) 

1 kT~ 1/2 
2h 2 exp ( -  u 2) + ~ erfc u (A4) 

1 
= ~ e x p ( - u  2) - - -  

1 
= ~-~ f ;  exp ( -  u 2) d(hx + k) 

k 
I :  exp ( - u 2) d(hx + k) 

h 2 

k~ 1/2 2 
f :  exp ( -  u 2) d(hx + k) 2h 2 ~1/2  

k7~1/2 k~l/2 
2h 2 + ~ e r f ( u )  

1 kl~ 1/2 
= ~-5 exp ( -  u 2) - ~ erfc u (A5) 
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